QUADRANT – Engineering Plastic Products

MediTECH Product Line – implantable grade UHMW-PE

Stefan Willing, QUADRANT

QUADRANT MediTECH

Medical grade UHMW-PE manufactured and supplied by Quadrant MediTECH as shapes (plate, rod, preforms) to be used in Orthopedics Implants

CHIRULEN[®] EXTRULEN[®] PE-UHMW medical grade

CHIRULEN[®] EXTRULEN[®] PE-UHMW medical grade

QUADRANT MediTECH: Medical grade UHMW-PE

QUADRANT MediTECH: Medical grade UHMW-PE

QUADRANT MediTECH: Medical grade UHMW-PE

Compression molding technology: 3 dedicated presses Cleanroom operations (ISO 14644-1, class 8, note: Vreden only) Special mold surface allows elimination of release agent

MediTECH Conversion Technology

Fort Wayne Pressing Operation

QUADRANT – Engineering Plastic Products

Product range of CHIRULEN[®] and EXTRULEN[®]

- CHIRULEN[®] 1020
- CHIRULEN® 1050

standard sizes:

sheet size sheet thickness rod diameter rod length 1000 mm x 500 mm 20 mm to 80 mm 20 mm to 80 mm 500 mm, 1000 mm

- EXTRULEN[®] 1020
- EXTRULEN[®] 1050

standard diameter

length

12 mm to 100 mm 500 mm, 1000 mm, 3000 mm

Special sizes, cut-to-size, fabricated preforms upon request

MediTECH Product Line – Typical applications

[Orthopedics - Total Joint Replacement]

[Application: artificial hip and knee components]

Material	[CHIRULEN® 1020 and 1050]
Processes	[Compression Molding, Stabilization under N ₂]

Properties and benefits:

- Stabilized / annealed under inert atmosphere (N₂)
- High dimensional stability
- Very high impact strength, excellent sliding properties, very high wear resistance

n

- Full traceability for 30 years
- GMP Validated Processes
- Biocompatible, per ISO 5834, ASTM F 648 and USP Class VI requirements
- Long-term record in Orthopedics (e. g. hip, knee, elbow joint replacements)

[Orthopedics - Total Joint Replacement]

[Application: artificial hip and knee components]

Material	[Crosslinked CHIRULEN® 1020/1050]
Processes	[Compression Molding, Stabilization under $N_{2,}$ Crosslinking process, secondary stabilization process under N_{2}]

Properties and benefits:

- Improved wear resistance
- manufactured according to customer specifications
- cross-linking and stabilizing expertise with MediTECH, irradiation process performed by outside vendor(s)
- GMP Validated Processes

[Orthopedics – Spinal Implant]

[Application: discs in spinal implants]

Material	[CHIRULEN [®] 1020]
Processes	[Compression Molding, Stabilization under N_2]

Properties and benefits:

- High dimensional stability
- Very high toughness and wear resistance
- Full traceability for 30 years
- GMP Validated Processes
- Biocompatible per USP Class VI requirements

[Medical Devices]

[Application: cutting block for medical device]

Material	[CHIRULEN [®] 1020]
Processes	[Compression Molding, Stabilization under N_{2}]

Properties and benefits:

- High dimensional stability
- Very high toughness and wear resistance
- Full traceability for 30 years
- GMP Validated Processes
- Biocompatible per USP Class VI requirements

MediTECH[®] Product Line: Locations within Quadrant

MediTECH U.S.

Primary Conversion Heat Treating & Finishing **Cross-linking Custom Processing Sales & Distribution R&D / Testing Laboratory**

MediTECH U.K. **MediTECH Germany**

MediTECH France MediTECH Italy MediTECH Hungary

Primary Conversion Heat Treating & Finishing Cross-linking Custom Processing Sales & Distribution R&D / Testing Laboratory **MediTECH** Japan

MediTECH China

MediTECH India

MediTECH® - Quality Management

- Quality Guidelines: ASTM F 648 and ISO 5834, customer's specification
- Resin lot qualification process
- Cross-check for physical/mechanical properties with Ticona (raw material supplier) and MediTECH U.S.
- Monthly resin lot verification and cross-check
- Dedicated MediTECH press operation since 1994
- 100 % press cycle verification
- Validated compression molding process
- Validated annealing cycles (nitrogen atmosphere)
- AQL10 visual inspection
- ISO 9001 certified
- ISO 14001 certified
- ISO 13485 certified

- Process parameters are visualized and filed during the entire process
- Quality Manuals available in the Intranet for medical personnel
- Traceability System
 based on Electronic
 Database

MediTECH® - Technology

- Annealing Technology using Nitrogen Atmosphere
 - Tight implant tolerances
 - preventing material oxidation
 - Quenching free radicals after cross linking

How does MediTECH Division ensure the extremely high quality standard necessary for CHIRULEN[®] and EXTRULEN[®] ?

CHIRULEN[®] and EXTRULEN[®] products undergo intensive visual inspection to make sure requirements of ISO 5834 and ASTM F 648 are by far exceeded.

Resin "Cleanliness"	7.1.2.1 A 300 g sample is divided into four 75 g samples. Place a 75 g sample in each of four 1000 mL Erlenmever
Test per ISO 5834-1 and ASTM F-648 at Ticona	flasks, add 400 mL isopropyl alcohol, shake 5 min, and let settle for 5 min. Count the total number of particles of extraneous matter in the four flasks.

QUADRANT

MediTECH® - Technology

State of the art machining operations

- CNC lathe without cooling agent (for preforms only no final implant component!)
- Optical and mechanical measurement device
- AQL10 optical inspection

Quality standards achieved by:

-> continuous process improvements and well trained people

resin →	pressing →	annealing →	Machining (preforms)
 Resin lot qualification and Cross-check process Reduced contamination by training the operators Validated resin conditioning 	 Dedicated press Small scale press High pressure operations No release agents Validated in the manner of GMP 	 Cycle for dimensional stability, low stress Unique inert process, prevent oxidation 	 No cooling agents Special tooling and machining parameters Optical inspection of surface quality

Process/Product Innovation

Proven Research and Development capabilities

MediTECH® conversion evolution

- Next generation pressing technology for product and process improvement
- Improved homogeneity through optimized resin handling

Radiation processing (Crosslinking)

- Developed jointly with our customers' R&D / Technical Departments
- Leading supplier of Crosslinked UHMWPE in bulk form Radiation processing (Crosslinking)

Stabilized PE-UHMW

- Blend PE-UHMW with additives, to improve oxidation behavior
- Developed jointly with our customers' R&D / Technical Departments

Jointly developed Medical Polymers: UHMW-PE with Vitamin E

Cross-linking of medical grade PE-UHMW

Highly cross-linked medical grade PE-UHMW

Latest development in the orthopedic implant industry with regard to Polyethylene:

- Highly cross-linked PE-UHMW with improved tribological properties.
- Highly cross-linking achieved through either electron beam or gamma irradiation and subsequent, specially designed, annealing process to eliminate free radicals.
- ...to markedly improve the wear resistance of UHMWPE
- ...to significantly reduce the number of wear particles generated in vivo.

Cross-linking of medical grade PE-UHMW

Radiation Chemistry

- Gamma Irradiation
- E-Beam Irradiation

Conventional Chemistry

- Peroxide Chemistry
- Silane Chemistry

Radiation Units: 10 kGy = 1 Mrad

Typical sterilization dose levels: 25-40 kGy = 2.5-4 Mrad

Highly cross-linking: above typical dose level of sterilization.

E-beam and gamma irradiation

- 1 penetration depth of electrons
- 2 primary electrons (source)
- **3 secondary electrons**
- 4 irradiated material

Gamma irradiation

- 5 Co-60 irradiation source
- 6 γ-quanta

Cross-linking of medical grade PE-UHMW

What can MediTECH contribute to develop highly cross-linked PE-UHMW for orthopedic implants?

- MediTECH has several years experience developing highly cross-linked PE-UHMW for orthopedic implants in close cooperation with leading orthopedic implant manufacturers
- MediTECH currently provides significant commercial quantities of radiation cross-linked PE-UHMW to the orthopedic industry
- MediTECH understands the radiation process with respect to PE-UHMW closely cooperating with radiation vendors
- MediTECH knows how radiation and subsequent annealing affects PE-UHMW
- MediTECH has more than 20 years experience heat treating PE-UHMW for stabilization on large scale

Cross-linking of medical grade PE-UHMW

Supply chain for highly cross-linked premium PE-UHMW

- 1. MediTECH produces semi-finished PE-UHMW products (CHIRULEN® and EXTRULEN®)
- 2. Irradition of PE-UHMW semi-finished products at irradiation vendor at specified dose range (note: the dose range is to be specified by the OIM)
- 3. Specially designed annealing process at MediTECH to eliminate residual free radicals and to complete cross-linking process (note: annealing temperature and process is to be specified by the OIM)
- 4. Machine finish of highly cross-linked PE-UHMW products (planed sheets, rods, preforms etc.) at MediTECH
- 5. Delivery to customer, machine finish, packaging, sterilization

Options for highly cross-linked premium PE-UHMW

Example for a process specification to be devised by the Impant Manufacturer

Step					
	1 base material		Chirulen 1020/1050	CHIRULEN 1020	
	2 shape	initial size	sheet 1000x500 [mm] x		[mm]
		at irradiation	rod 1000 [mm] x	70	[mm]
	0 involtation			75	
	3 Irrdiation		gamma, dose rate	/5	[kGy], Tolerance: +/- 10 %
			e-beam, dose rate		[kGy]
			Temperature	room temperature	[°]
			Atmosphere (Air/Inert)	Air	
	4 quenching		MediTECH cycle	150	[°C]
	quenoning		110°/ 150 °	100	[0]
			Atmosphere (Air/Inert)	Inert (= Nitrogen)	
	5 remove surface	final shape	sheet 1000x500 [mm] x		[mm]
		after irradiation and annealing/quenching	rod 1000 [mm] x	60	[mm]
	6 packaging		standard/ black PE film	black PE film	

